Data Visualization for Oracle Business Intelligence 11g

BIWA Summit 2015

Tim Vlamis
Dan Vlamis
Vlamis Software Solutions
816-781-2880
http://www.vlamis.com
Vlamis Software Solutions

- Vlamis Software founded in 1992 in Kansas City, Missouri
- Oracle Gold Partner, Oracle University Partner
- Developed more than 200 Oracle BI systems
- Specializes in ORACLE-based:
 - Business Intelligence
 - Data Warehousing
 - Data Mining and Predictive Analytics
 - Data Visualization
- Expert presenter at major Oracle conferences
- Authors of 2015 book “Data Visualization for Oracle BI 11g”
- Co-author of book “Oracle Essbase & Oracle OLAP”
- www.vlamis.com (blog, papers, newsletters, services)
- Beta tester for OBIEE 11g, 12c
- Conference chair for BIWA Summit 2014, 2015
Tim and Dan Vlamis

- Tim (business analyst and academic guy)
 - 25+ years in business modeling, valuation, and scenario analysis
 - Professional Certified Marketer (PCM) from AMA
 - Active Member of NICO (Northwestern Institute on Complex Systems)
 - Adjunct Professor of Business, Benedictine College
 - MBA Kellogg School of Management (Northwestern University)
 - BA Economics Yale University

- Dan (OLAP expert and career IT guy)
 - 25+ Years in business intelligence/executive information systems
 - Led development team at IRI
 - Founded Vlamis Software Solutions 20+ years ago in 1993
 - Author, speaker, Oracle ACE Director
 - BA Computer Science Brown University
New Book!

Special Thanks to:

Paul Carlstroem
Philippe Lions
Brian Macdonald
Jayant Sharma
Oracle BI Prod Mgmt
Table of Contents

1. Introduction .. 1
2. Tables ... 19
3. Graphs ... 59
4. Maps ... 93
5. Advanced Visualizations .. 123
6. BI Publisher .. 157
7. Dashboard Design & Mechanics 177
8. Dashboard Interactions ... 205
9. Scorecard & Strategy Management 233
10. Mobile ... 245
11. Other Visualization Topics 269
12. General Advice .. 299

Index .. 315
What to expect in the book

• Not a “how to”, more of a “what and why to”
• Not every example is perfect
• Writing process (Tim rough draft, Dan challenge and fix)
• Color challenge (gray scale versus color)
• Content challenge (advanced material requires explanation which we didn’t have space for)
Presentation Agenda

• Human cognition insights
• OBIEE demo
• Table design
 • Best practices
 • When and when not to use
• Graph design
 • Best practices
 • Use cases for different graph types
• Questions from audience at all times
Many BI Systems Can Create Beautiful Results
OBI Operates at a Different Scale
Ingredients → Data Quality & Variety
Technique ➔ Data Processing & Prep
Presentation → Data Visualization
• Best practices are objective guides to what is likely to work best.

• Visualizations should be guided by:
 • Human cognition
 • Accurate representations of data
 • Preferred message (consciously designed by visualization developer)

• Visualizations should NOT be guided by:
 • Taste or what looks “good” to one person
 • Entertain users
 • A desire to “fill the white space”
The Principles of Human Cognition Should Guide BI Dashboard Design
The Spirals are the Same Color
Graphs and Tables

• Graphs and Charts depict visual representations and relationships

New Product Market Penetration

• Tables show data organized for lookup of specific, precise values or items.

<table>
<thead>
<tr>
<th>Order Type</th>
<th>No of Orders</th>
<th>Sales</th>
<th>Billed Quantity</th>
<th>Actual Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Express</td>
<td>13,980</td>
<td>$14,027,034</td>
<td>1,117,199</td>
<td>$12.56</td>
</tr>
<tr>
<td>Secure</td>
<td>29,347</td>
<td>$28,513,745</td>
<td>2,326,540</td>
<td>$12.26</td>
</tr>
<tr>
<td>Standard</td>
<td>27,673</td>
<td>$27,459,221</td>
<td>2,213,482</td>
<td>$12.41</td>
</tr>
<tr>
<td>Grand Total</td>
<td>71,000</td>
<td>$70,000,000</td>
<td>5,657,221</td>
<td>$12.37</td>
</tr>
</tbody>
</table>
Characteristics of Tables

• Can present data at drastically different scales.
• Can present very different data types simultaneously.
• Can repeat and include multiple sets of the same data values.
• Are extraordinarily dense and include numerous data relationships without direct distortion of the data itself.
• Tables can present “federated” data from different sources in a single simultaneous view.
I want to see Sales (specifies cell values) by Product Type and Company (defines rows) across Market Segments (defines columns).
Keys to Effective Tables

- Prefer smaller tables
- Words are important
- Enable roll overs for meta data for commonly used tables
- Write informative titles for tables and column head descriptions
- Make tables clean and easy to read
- Eliminate unnecessary gridlines
- Use space (padding) to create groups of data
- Left justify text cells and Right justify numerical cells
- Make numbers easy to read and understand
- Judiciously use conditional formatting
- Avoid putting text in color
- Align the decimal point for numerical cells
- Use symbols to denote units of measure (%, $, etc.)
- Enable column and row sorting
- Avoid scrolling (if possible)
- Be transparent about data selection

Example Table

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Company</th>
<th>Active Singles</th>
<th>Baby Boomers</th>
<th>Others</th>
<th>Rural Based</th>
<th>Seniors</th>
<th>Students</th>
<th>Urban Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Genmind Corp</td>
<td>$95,916</td>
<td>$29,746</td>
<td>$23,710</td>
<td>$40,947</td>
<td>$60,397</td>
<td>$59,891</td>
<td>$77,722</td>
</tr>
<tr>
<td></td>
<td>Stockplus Inc.</td>
<td>$128,470</td>
<td>$29,693</td>
<td>$38,455</td>
<td>$68,506</td>
<td>$100,349</td>
<td>$120,508</td>
<td>$111,572</td>
</tr>
<tr>
<td></td>
<td>Tescare Ltd.</td>
<td>$104,461</td>
<td>$35,374</td>
<td>$27,900</td>
<td>$56,392</td>
<td>$96,501</td>
<td>$121,121</td>
<td>$93,280</td>
</tr>
<tr>
<td>Accessories Total</td>
<td></td>
<td>$328,847</td>
<td>$94,813</td>
<td>$90,064</td>
<td>$165,845</td>
<td>$257,247</td>
<td>$301,520</td>
<td>$282,572</td>
</tr>
<tr>
<td>Audio</td>
<td>Genmind Corp</td>
<td>$168,612</td>
<td>$50,236</td>
<td>$21,842</td>
<td>$74,952</td>
<td>$126,754</td>
<td>$133,788</td>
<td>$124,072</td>
</tr>
<tr>
<td></td>
<td>Stockplus Inc.</td>
<td>$215,921</td>
<td>$42,336</td>
<td>$55,632</td>
<td>$124,469</td>
<td>$149,511</td>
<td>$169,330</td>
<td>$144,029</td>
</tr>
<tr>
<td></td>
<td>Tescare Ltd.</td>
<td>$173,022</td>
<td>$61,713</td>
<td>$30,048</td>
<td>$102,717</td>
<td>$162,078</td>
<td>$202,451</td>
<td>$161,995</td>
</tr>
<tr>
<td>Audio Total</td>
<td></td>
<td>$557,555</td>
<td>$154,285</td>
<td>$107,522</td>
<td>$302,137</td>
<td>$438,343</td>
<td>$505,569</td>
<td>$430,096</td>
</tr>
<tr>
<td>Camera</td>
<td>Genmind Corp</td>
<td>$154,930</td>
<td>$50,453</td>
<td>$23,935</td>
<td>$73,360</td>
<td>$129,189</td>
<td>$143,608</td>
<td>$136,459</td>
</tr>
<tr>
<td></td>
<td>Stockplus Inc.</td>
<td>$189,520</td>
<td>$45,571</td>
<td>$57,449</td>
<td>$88,445</td>
<td>$154,237</td>
<td>$181,047</td>
<td>$162,000</td>
</tr>
<tr>
<td></td>
<td>Tescare Ltd.</td>
<td>$182,757</td>
<td>$83,650</td>
<td>$45,512</td>
<td>$89,213</td>
<td>$140,187</td>
<td>$208,441</td>
<td>$151,215</td>
</tr>
<tr>
<td>Camera Total</td>
<td></td>
<td>$527,207</td>
<td>$179,675</td>
<td>$126,895</td>
<td>$251,019</td>
<td>$423,613</td>
<td>$533,096</td>
<td>$449,674</td>
</tr>
<tr>
<td>Cell Phones</td>
<td>Genmind Corp</td>
<td>$120,376</td>
<td>$40,799</td>
<td>$24,293</td>
<td>$61,451</td>
<td>$82,200</td>
<td>$103,754</td>
<td>$97,480</td>
</tr>
<tr>
<td></td>
<td>Stockplus Inc.</td>
<td>$161,238</td>
<td>$47,570</td>
<td>$37,670</td>
<td>$71,548</td>
<td>$129,511</td>
<td>$133,459</td>
<td>$144,812</td>
</tr>
<tr>
<td></td>
<td>Tescare Ltd.</td>
<td>$157,717</td>
<td>$50,948</td>
<td>$30,873</td>
<td>$79,242</td>
<td>$130,167</td>
<td>$164,272</td>
<td>$116,630</td>
</tr>
<tr>
<td>Cell Phones Total</td>
<td></td>
<td>$439,331</td>
<td>$139,317</td>
<td>$92,837</td>
<td>$212,241</td>
<td>$341,879</td>
<td>$401,484</td>
<td>$358,921</td>
</tr>
<tr>
<td>Fixed</td>
<td>Genmind Corp</td>
<td>$144,814</td>
<td>$35,190</td>
<td>$20,000</td>
<td>$94,115</td>
<td>$128,411</td>
<td>$152,767</td>
<td>$138,280</td>
</tr>
<tr>
<td></td>
<td>Stockplus Inc.</td>
<td>$234,518</td>
<td>$56,263</td>
<td>$53,545</td>
<td>$109,985</td>
<td>$160,065</td>
<td>$238,484</td>
<td>$180,872</td>
</tr>
<tr>
<td></td>
<td>Tescare Ltd.</td>
<td>$197,073</td>
<td>$57,671</td>
<td>$50,893</td>
<td>$121,302</td>
<td>$170,018</td>
<td>$173,601</td>
<td>$177,137</td>
</tr>
</tbody>
</table>
7 Keys to Effective Graphs

• Do not use 3-D effects.
• Avoid “stop light” color palette.
• Prefer pastel color palettes and avoid bright colors.
• Eliminate gridlines, drop shadows, and other graphics.
• Enable interaction for “exploration” graphs.
• Prioritize a single message for “explanation” graphs.
• Above all else, show the data!
• Show a pattern or progression over a continuous range.
• Can be valued within a range to highlight a particular pattern (careful!).
• Maintain a rectangular shape close to golden proportion.
• Use scale marker lines and ranges for context.
• Use darker versions of standard colors.
• Eliminate grid lines.
• Use zoom function for detailed line graphs.
• Choose curved lines to smooth overall shape.
• Choose stepped lines to emphasize point transitions.
Target Revenue % by Brand for 2012

- BizTech
- FunPod
- HomeView

Legend:
- Good
- Low
- Scale marker

% Achieved

Bar Graphs

- Show nominal data values in comparison to one another.
- Start with zero.
- If use a logarithmic scale, clearly notate.
- Think through sort order carefully.
Bar Graphs

- Add data labels as interactive rollover.
- Balance colors.
- If change is most important, graph change.
Stacked Bar Chart

- Somewhat confusing, not great for representing change.
- Total is most clearly represented number.
- Typically stack with largest values on the bottom.
- Single scale can make for interesting intra-bar comparisons.
Pie Charts

• Typically used for showing parts of whole by percentage.
• Not great for piece to piece comparisons.
• Limit number of pieces.
• Can be interesting to show lots of pies together if significant differences exist.
• Stephen Few hates them.
• Do not use 3-D.
Scatter Plot

- Shows single data points at the intersection of two values.
- Often depict a large number of discrete data points (hundreds or thousands).
- Useful comparisons of two variables.
- Trend lines are often added.
- Clearly notate if use logarithmic scale(s).
Bubble Chart

- Special type of scatter plot.
- Size of bubble is related to a third variable.
- Color is related to a fourth variable.
- Reduces number of points that can be depicted.
- Best for depicting approximate values and comparisons.
i want hue

Colors for data scientists. Generate and refine palettes of optimally distinct colors.

Color space

Palette

Make a palette
A Dashboard is a visual presentation of current summary information needed to manage and guide an organization or activity.
BI Dashboards are Different

• No mechanical systems needed to move indicators.
• Decisions are not typically made on a second-to-second basis.
• BI dashboards are not primarily single situation or single person devices.
BI Dashboards

- Role-based.
- Data selection and filtering are extremely important.
- Dashboards support evidenced-based decision making.
- Shared understanding of business situation is a key benefit.
- Content may be individualized.
- Design should be standardized.
OBIEE Dashboard Overview

- Designed with columns and sections (containers).
- Presentation server is often separate from BI server.
- Dashboards are web-based and are viewed with browsers.
- HTML, XML, and Java coding skills are useful, but not required.
Dashboard Principles

• Promote user interactivity
 • Prompts
 • View and column selectors
 • Hierarchical column drills
 • Column sorts
 • Guided navigation and action links

• Promote data transparency
 • Prompts
 • Filter views
 • Narrative views
 • Master detail linking

• Establish design guidelines for consistency
Maps

- Humans think spatially
- Types of maps
- Map best practices
- Making meaningful maps
- Built-in data sets
- HERE (NAVTEQ) data sets and POI data
- Sources for additional data sets
Maps convey dense, multi-dimensional relationships in data faster and more intuitively than any other graphical display methodology.
When Are Map Views Useful?

• Visualizing data related to geographic locations.
• Showing or detecting spatial relationships and patterns.
• Showing lots of data in a relatively small area.
• Drilling down from a (map) overview to a detailed report, chart, or graph.
• When is location important? Can the dimension be plotted on a map?
Map View Tips

• Think about what scale to use. Different map scales will reveal different patterns and insights.
• Use Variable marker to display two measures on a map at a point – size and color.
• Avoid overlapping shapes too much.
• Be aware of spatial distortions E.g. Texas is larger than Connecticut.
• Look at color palette. www.colorbrewer2.org
Map Definitions

• FEATURE
 • Provide a spatial context: cities, highways, rivers, etc…
 • Features of Interest: store location, postal boundaries, pipelines, etc…

• STYLE
 • Define rendering properties for features
 • Can control fill color, border color, line thickness, line style and more

• THEME
 • Collection of features
 • Typically associated with a spatial geometry layer
 • County/state boundaries, major highways, etc…

• BASEMAP
 • A grouping of themes to create a map
 • Maps can share themes
 • When associating a theme with a map, can specify min scale and max scale (sometimes known as zoom control)

• MAP
 • Basemap with additional themes overlain
Map Interactivity in OBIEE 11g

- Display BI data on top of maps
 - Color fill
 - FOI point display
- Interact with other Dashboard Elements
 - Drive map content with dashboard prompts
 - Drive map content through drilling and navigation
 - Drive other dashboard elements through map interactions
- Reveal additional information on maps through mouseovers
- Drill to map detail
Map View Formats

- Color Fill (choropleth)
 - Percentile, Value, Continuous binning
 - Dashboard user run-time slider
- Graphs – Bar, Pie
 - Adjustable graph size
 - Series by second dimension
- Bubble (variable sized)
 - Min-Max size specification
 - Color specification
- Variable Shape
 - Circle, Triangle, Diamond
 - Customizable
- Image
 - Imported via MapViewer
 - More can be added from MapBuilder
- Custom Point Layer
 - Uses Lat / Long
 - Does not require a Layer Def
Trellis Charts

• Trellis Layout of Smaller Charts in a grid with Consistent Scales
• Great for finding structures / patterns in complex data
• Use 2D Layout to View Multidimensional Data (like a timeline – mental animation)
Trellis View - Simple

• Single type of inner visualization
• Common synchronized scale across all graphs
• Has scale showing by default (can turn off)
• Lots of graph types
 • Vertical Bar
 • Horizontal Bar
 • Line
 • Area
 • Line-Bar
 • Pie
 • Scatter
 • Bubble
Trellis View - Advanced

- Pivot table with numbers or graphs in cells
- Each microchart has its own scale and not shown
- Most often used to see trend lines
- No axis description, so across should be time
- Can have different visualizations for different measures
 - Spark bar
 - Spark line
 - Spark area
 - Numbers
New Trellis Views

• Does not require Exalytics but need fast Pres Server
• Can display LOTS of data in compact form
• Capable of dense visualizations
 • Great for snapshot of trending
 • Great for comparing patterns across dimension values
• Two types
 • Simple (shows full graphs per cell)
 • Advanced (sparklines – no scales per cell, separate scales)
• Need to think what you’re trying to show on a trellis
• Integrated toolset in OBIEE
• Follows “Balanced Scorecard” methodology
• Enables corporate goals and objectives to be monitored and managed
• Includes strategy maps, strategy trees, KPI watch lists, and cause and effect maps

Copyright © 2014, Vlamis Software Solutions, Inc.
New Contribution Wheel Visualization
General Advice

- Working with BI Catalog
- Development Standards
- Working with Executives
- Working with IT and DBAs
- Developing Trust in BI Systems
- Getting Started
 - Workshops
 - Assessments
 - Training
 - Metadata Communication and Documentation
- The Long Road
Where to Start

• Workshops
• Assessments
• Training
• Metadata Communication and Documentation
waterfall graph example profit for 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/01</td>
<td>2011</td>
<td>781,389</td>
</tr>
<tr>
<td>2011/02</td>
<td>2011</td>
<td>1,194,264</td>
</tr>
<tr>
<td>2011/03</td>
<td>2011</td>
<td>1,599,234</td>
</tr>
<tr>
<td>2011/04</td>
<td>2011</td>
<td>1,857,816</td>
</tr>
<tr>
<td>2011/05</td>
<td>2011</td>
<td>2,153,590</td>
</tr>
<tr>
<td>2011/06</td>
<td>2011</td>
<td>3,416,722</td>
</tr>
<tr>
<td>2011/07</td>
<td>2011</td>
<td>2,913,641</td>
</tr>
<tr>
<td>2011/08</td>
<td>2011</td>
<td>2,290,621</td>
</tr>
<tr>
<td>2011/09</td>
<td>2011</td>
<td>2,381,868</td>
</tr>
<tr>
<td>2011/10</td>
<td>2011</td>
<td>1,957,592</td>
</tr>
<tr>
<td>2011/11</td>
<td>2011</td>
<td>1,288,446</td>
</tr>
<tr>
<td>2011/12</td>
<td>2011</td>
<td>1,315,215</td>
</tr>
</tbody>
</table>

Gross Profit Contribution by Month for 2011

- Increase
- Decrease
- Total
- Break Even

Month
Pivot Table Heat Map Sorted by Totals

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Games</th>
<th>TV</th>
<th>Communication</th>
<th>Electronics</th>
<th>Services</th>
<th>Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ</td>
<td>3,842,965</td>
<td>914,719</td>
<td>729,827</td>
<td>681,779</td>
<td>711,446</td>
<td>457,920</td>
<td>407,063</td>
</tr>
<tr>
<td>Guessel Office</td>
<td>1,724,738</td>
<td>824,599</td>
<td>693,365</td>
<td>564,895</td>
<td>707,271</td>
<td>406,200</td>
<td>380,496</td>
</tr>
<tr>
<td>Madison Office</td>
<td>3,716,987</td>
<td>825,543</td>
<td>779,601</td>
<td>727,522</td>
<td>611,711</td>
<td>446,598</td>
<td>334,278</td>
</tr>
<tr>
<td>Spring Office</td>
<td>3,769,601</td>
<td>874,327</td>
<td>717,221</td>
<td>667,680</td>
<td>685,568</td>
<td>322,951</td>
<td>357,004</td>
</tr>
<tr>
<td>Effie Office</td>
<td>3,856,867</td>
<td>823,021</td>
<td>728,795</td>
<td>676,905</td>
<td>632,543</td>
<td>455,855</td>
<td>395,746</td>
</tr>
<tr>
<td>Morang Office</td>
<td>3,641,190</td>
<td>813,880</td>
<td>721,387</td>
<td>665,290</td>
<td>635,079</td>
<td>418,865</td>
<td>360,760</td>
</tr>
<tr>
<td>Perry Office</td>
<td>3,639,594</td>
<td>852,637</td>
<td>683,563</td>
<td>644,817</td>
<td>665,727</td>
<td>409,440</td>
<td>350,290</td>
</tr>
<tr>
<td>College Office</td>
<td>3,385,286</td>
<td>810,820</td>
<td>628,431</td>
<td>651,772</td>
<td>657,380</td>
<td>308,023</td>
<td>356,098</td>
</tr>
<tr>
<td>Cooper Office</td>
<td>3,580,742</td>
<td>839,249</td>
<td>687,280</td>
<td>646,662</td>
<td>635,767</td>
<td>410,720</td>
<td>361,046</td>
</tr>
<tr>
<td>River Office</td>
<td>3,492,153</td>
<td>818,424</td>
<td>680,337</td>
<td>623,381</td>
<td>619,210</td>
<td>407,934</td>
<td>312,656</td>
</tr>
<tr>
<td>Montgomery Office</td>
<td>3,408,846</td>
<td>789,988</td>
<td>668,218</td>
<td>665,094</td>
<td>577,288</td>
<td>370,329</td>
<td>293,281</td>
</tr>
<tr>
<td>Mills Office</td>
<td>3,403,256</td>
<td>781,124</td>
<td>624,268</td>
<td>626,036</td>
<td>655,321</td>
<td>404,171</td>
<td>345,006</td>
</tr>
<tr>
<td>Sherman Office</td>
<td>3,403,022</td>
<td>755,788</td>
<td>664,182</td>
<td>657,178</td>
<td>600,029</td>
<td>368,831</td>
<td>306,213</td>
</tr>
<tr>
<td>Bluebell Office</td>
<td>3,380,918</td>
<td>726,222</td>
<td>662,799</td>
<td>674,691</td>
<td>596,770</td>
<td>417,274</td>
<td>301,961</td>
</tr>
<tr>
<td>Casino Office</td>
<td>3,573,543</td>
<td>741,825</td>
<td>697,823</td>
<td>655,517</td>
<td>583,168</td>
<td>421,787</td>
<td>296,897</td>
</tr>
<tr>
<td>Eden Office</td>
<td>3,139,510</td>
<td>736,813</td>
<td>647,644</td>
<td>675,284</td>
<td>559,851</td>
<td>404,350</td>
<td>294,930</td>
</tr>
<tr>
<td>Foster Office</td>
<td>3,314,839</td>
<td>739,522</td>
<td>658,719</td>
<td>638,517</td>
<td>570,302</td>
<td>416,799</td>
<td>200,780</td>
</tr>
<tr>
<td>Tellero Office</td>
<td>3,295,579</td>
<td>736,662</td>
<td>664,369</td>
<td>632,993</td>
<td>556,082</td>
<td>409,520</td>
<td>290,953</td>
</tr>
<tr>
<td>Mission Office</td>
<td>3,367,581</td>
<td>735,912</td>
<td>636,912</td>
<td>622,936</td>
<td>568,729</td>
<td>407,793</td>
<td>283,408</td>
</tr>
<tr>
<td>Cameron Office</td>
<td>3,216,784</td>
<td>722,749</td>
<td>636,915</td>
<td>612,971</td>
<td>506,409</td>
<td>412,947</td>
<td>270,893</td>
</tr>
</tbody>
</table>

Total: 70,000,000

Add to watching list
```r
function(n, th=110, ph=0)
# Perspective plot - Manaia Whau, One of 50 Volcanoes in the Auckland

z <- 2 * volcano  # Exaggerate the relief
x <- 10 * (1, ncol(z))  # 10 meter spacing (x to M)
y <- 10 * (1, ncol(z))  # 10 meter spacing (x to M)

z0 <- min(z) - 20
z <- z - z0
x <- c(min(x), 1e-10, x, max(x) + 1e-10)
y <- c(min(y), 1e-10, y, max(y) + 1e-10)

fill <- max(fill, (z > 20)
fill[fill] <- c(0, ncol(fill)) <- "gray"

persp(x, y, z, theta = th, phi = ph, col = fill, scale = FALSE,
      ltheta = -120, shade = 0.4, border = NA, box = FALSE)
```
Questions?
More info

- URL for book
- Table in lobby
- Other presentations by Vlamis
- Collaborate and ODTUG KScope
• Add business card to basket or fill out card
Thank You!

Thank You for Attending Session
Data Visualization for OBI 11g

Presenter Information:
Dan Vlamis, President
Tim Vlamis, Consultant
Vlamis Software Solutions, Inc.
816-781-2880
tvlamis@vlamis.com
dvlamis@vlamis.com
For more information go to www.vlamis.com

Copyright © 2014, Vlamis Software Solutions, Inc.