Forecasting, Prediction Models, and Times Series Analysis with Oracle Business Intelligence and Analytics

Collaborate 2015

Dan Vlamis and Tim Vlamis
Vlamis Software Solutions
816-781-2880
http://www.vlamis.com
• Understanding classification and forecasting (predictions)
• Use of Geneva Forecasting engine in Oracle OLAP
 • Holt-Winters and time series
 • Parameter choices
• ARIMA forecasting algorithm in R
 • Use Oracle R Enterprise
• Use of time dimension and time series functions in OBI
Vlamis Software Solutions

• Vlamis Software founded in 1992 in Kansas City, Missouri
• Developed more than 200 Oracle BI systems
• Specializes in ORACLE-based:
 • Data Warehousing
 • Business Intelligence
 • Data Mining and Predictive Analytics
 • Data Visualization
• Expert presenter at major Oracle conferences
• www.vlamis.com (blog, papers, newsletters, services)
• Co-authors of book “Data Visualization for OBI 11g”
• Co-author of book “Oracle Essbase & Oracle OLAP”
• Oracle University Partner
• Oracle Gold Partner
Tim Vlamis and Dan Vlamis

• Tim Vlamis
 • 25+ years experience in business modeling and valuation, forecasting, and scenario analyses
 • Oracle ACE
 • Instructor for Oracle University’s Data Mining Techniques and Oracle R Enterprise Essentials Courses
 • Professional Certified Marketer (PCM) from AMA
 • Adjunct Professor of Business Benedictine College
 • MBA Kellogg School of Management (Northwestern University)
 • BA Economics Yale University

• Dan Vlamis
 • Founded Vlamis Software Solutions in 1993
 • 25+ years in business intelligence, dimensional modeling
 • Oracle ACE Director
 • Developer for IRI (expert in Oracle OLAP and related)
 • BA Computer Science Brown University
Forecasting Today

• Predictions are the holy grail of BI systems and initiatives.
• Most all corporations have need for forecasting.
• Typical forecasting systems
 • Are stand alone or from ERP (not integrated to BI system)
 • Tend to use straight line or heuristic calculations.
 • Not always integrated into the business.
 • Are often tied directly to the budgeting process
• High level of angst surrounding forecasts.
Forecasting Should…

• Should be integrated with rest of BI system.
• Should be another series of measures that are revealed in the context of historic information.
• Should be a part of the Common Enterprise Model.
• Should have visibility across functional areas and roles in corporations.
• Should leverage most powerful calculation tools (database and BI system).
• Ideally adjusted based on an integrated view across corporate functions (marketing, operations, finance, etc.).
Forecasting Methodologies

- Rule-based heuristic (last period, last period +5%, etc.)
- Cross-sectional methodologies (point in time)
- Time series (time sequenced data series)
- Mixed models
- Averages (moving, weighted, etc.)
- Linear and Non-linear regressions (line fitting)
- Transforms, projections, min/max
Methodologies for Today

- OLAP Geneva Forecasting Engine
 - Holt Winters for time series
- Oracle R Enterprise
 - ARIMA
- ODM Classification and Regression (overview)
- OBIEE Time Series Functions (overview)
• FCOPEN function -- Creates a forecasting context.
• FCSET command -- Specifies the forecast characteristics.
• FCEXEC command -- Executes a forecast and populates Oracle OLAP variables with forecasting data.
• FCQUERY function -- Retrieves information about the characteristics of a forecast or a trial of a forecast.
• FCCLOSE command -- Closes a forecasting context.
METHOD ‘method’

- **AUTOMATIC** best fit for the data. (Default)
- **LINREG** linear regression \(y = a \cdot x + b \) is fitted to the data.
- **NLREG1** nonlinear regression \(x' = \log(x) \) and \(y' = \log(y) \) a polynomial model between \(x \) and \(y(y = c \cdot x^a) \).
- **NLREG2** nonlinear regression \(x' = x \) and \(y' = \ln(y) \) an exponential model between \(x \) and \(y(y = c \cdot e^{ax}) \).
- **NLREG3** nonlinear regression \(x' = \log(x) \) and \(y' = y \) a logarithmic model between \(x \) and \(y(y = a \cdot \log(x) + b) \).
- **NLREG4** nonlinear regression method \(x' = 1/x \) and \(y' = 1/y \) an asymptotic curve \((y = x/(a+bx)) \).
- **NLREG5** nonlinear regression method \(x' = x \) and \(y' = \ln(y/(K-y)) \) an exponential asymptotic curve \((y = cK e^{ax}/(1+ce^{ax})) \).
- **SESMOOTH** single exponential smoothing method intended for short term forecasts of non-seasonal data.
- **DESMOOTH** double exponential smoothing method exponential smoothing is applied to both the series and the trend term.
- **CROSTON** Croston’s Intermittent Demand method. used for intermittent data where more than half of the observations are zero
- **HOLT/WINTERS** “triple” exponential smoothing. used on seasonal data
Using “Holt-Winters”

- Triple “Exponential Smoothing” methodology
- Used for data suspected to be seasonal
- Needs multiple seasons
- Assumes regular periods
- Pre/post processing may be necessary (fiscal calendar 445, irregular holidays, “Black Swans”, outages, etc.)
Exponential Smoothing

• Methodology for smoothing data and preferencing more recent periods when doing time series forecasts.
• Similar conceptually to a weighted moving average
• Weights decline according to an exponential function. {1, (1-\(\alpha\)), (1-\(\alpha\))^2, (1-\(\alpha\))^3, …}
• Higher values give more weight to more recent periods

• Single (weighted average of most recent observation and the most recent smoothed statistic)
• Double (trend either up or down)
• Triple (period effect)

FCSET Parameters

- **ALLOCLAST** {YES|NO}
- ALPHA {MAX|MIN|STEP} decimal
- **APPROACH** {'APPAUTO','APPMA NUAL'}
- BETA {MAX|MIN|STEP} decimal
- COMPSMOOTH {YES|NO}
- CYCDECAY {MAX|MIN} decimal
- GAMMA {MAX|MIN|STEP} decimal
- **HISTPERIODS** integer
- MAXFACTOR decimal
- **METHOD** 'method'
- MINFCFACTOR decimal
- MPTDECAY {MAX|MIN} decimal
- NTRIALS integer
- **PERIODICITY** cycle-spec
- RATIO decimal
- **SMOOTHING** {YES|NO}
- TRANSFORM {'TRNOSEA','TRSEA ','TRMPT'}
- TRENDHOLD {MAX|MIN|STEP} decimal
- WINDOWLEN integer

Copyright © 2015, Vlamis Software Solutions, Inc.
Recommendations

- Be careful of accepting the APPAUTO setting
- Be aware of Embedded total time dimensions
- Match HISTPERIODS with PERIODICITY for best results
- PERIODICITY cycle-spec is hierarchical from higher grain to lower
 - Ex \{52,7\} 52 weeks in a year, 7 days in a week
 - Ex \{4,13,7\} 4 quarters in a year, 13 weeks in a quarter, 7 days in a week
 - Ex \{12\} 12 months in a year
- Months are challenging to incorporate with other periods
Case Study Using Oracle OLAP

- Forecasted values from Oracle OLAP made no sense
- Client trying to use Best Fit – complicates study because don’t know what method chosen
- Avoid tendency to inherit mistakes
- Problem in “HISTPERIODS” parameter
 - Solution: set HISTPERIODS to number of data points
- Problem in forecasting on hierarchical dimension – 12 month periods, 1 year period throwing off forecast
 - Solution: LIMIT TIME TO TIMELEVEL ‘PERIOD’
- 4-4-5 “periods” artificially inflate every 3rd period
- Added 3rd year – average of 2 years
Example OLAP DML Forecast Program

```
vrbl _handle  int

" Removed error handling and definition of temporary variables such as DJOFCST2_C_SEASONAL
LIMIT DJOFCST2_C_MEASURE_DIM TO 'QTY_HW'

_handle = FCOPEN('MyForecast')

limit djotime_d2 to djotime_d2_levelrel eq 'PERIOD'
SORT DJOTIME_D2 a DJOTIME_D2_END_DATE
"Set forecast parameters for 'best fit'
fcset _handle method 'HOLT/WINTERS' APPROACH 'APPMANUAL' SMOOTHING 'YES' MAXFCFACTOR 10.0 TRANSFORM 'TRSEA' -
   periodicity 12 histperiods 36 BETA MAX 0.5

"Execute the forecast - save seasonal and seasonal smoothed into the variables just defined
FCEXEC _handle time DJOTIME_D2 INTO DJOFCST2_C_STORED -
   seasonal DJOFCST2_C_SEASONAL -
   smseasonal DJOFCST2_C_SMSEASONAL backcast DJOFCST2_C_QTY

ALLSTAT
"Close the forecast
FCCLOSE _handle

update
commit

return
```
Forecasts Did Not Make Sense
Forecasts Did Not Make Sense
Holt-Winters Vs. 3-Mo Moving Avg

Values

- Qty HW S
- ThreeMoAvg
Includes single, double, and triple exponential smoothing techniques.
Includes linear and non-linear regression option.
Does not include an auto-choice function.
Non-linear regression transforms must be manually applied.

Many other transform, calculation, and modeling capabilities in Essbase.
• Autoregressive Integrated Moving Average
• Powerful algorithm for series analysis and prediction
• Three parameters \((p, d, q)\)
 • Auto regression (how reliant series values are on previous series values). AR(0) is white noise.
 • Integrated (degree of AR differencing, Random Walk)
 • Moving average (smoothing function)
• ARIMA \((1,0,0) = AR(1)\)
• ARIMA \((1,0,1) = ARMA (1,1)\)
• Large number of potential models
• Know the name Rob Hyndman for ARIMA in R

https://www.otexts.org/fpp/
Stationarity

• Processes with no growth related to time.
• Random walks are stationary.
• Necessary to difference non-stationary series before applying ARMA models. (ARIMA handles this through the “Integrated” term “d“ of the \((p, d, q)\) model parameters.)
Non-Seasonal ARIMA \((p, d, q)\)

- \(\phi(B)(1 - B^d)\gamma_t = c + \theta(B)\varepsilon_t\)
- \(\{\varepsilon_t\}\) is a white noise process with 0 mean and variance \(\sigma^2\).
- \(B\) is a backshift operator
- \(\phi(z)\) is a polynomial of order \(p\)
- \(\theta(z)\) is a polynomial of order \(q\)
Seasonal ARIMA \((p, d, q)(P, D, Q)_m\)

- \(\Phi(B^m)\phi(B)(1 - B^D)(1 - B^d)\gamma_t = c + \Theta(B^m)\theta(B)\varepsilon_t\)

- \(\{\varepsilon_t\}\) is a white noise process with 0 mean and variance \(\sigma^2\).

- \(B\) is a backshift operator

- \(\Phi(z)\) is a polynomial of order \(p\)

- \(\Theta(z)\) is a polynomial of order \(q\)
Forecast() package in R

Includes methods:
• ets()
• auto.arima()
• Arima()
• arima()
• HoltWinters()
• StructTS()

Produces
• Simple forecasting
• Auto chooses best model (smallest AIC)
• Choose the model yourself
• Somewhat limited; use Arima()
• Exponential smoothing (seasonal)
• Maximum likelihood fit (ARIMA 0,2,2)
Choosing an ARIMA model

- Auto.arima can be used for model choice.
- Manual model choice requires hypothesis testing and evaluation of results.
- Use minimum AIC to chose best model
 - \[AIC = -2\log(L) + 2(p + q + P + Q + k) \]
 - Compare AIC values to each other, absolute values carry no meaning
ARIMA vs. Holt-Winters

- Holt-Winters can be used for series that are seasonal and have a trend. (require order 2 differencing in ARIMA)
- Model selection can be complex in ARIMA and auto.arima selection may not be well understood.
- ARIMA best for stationary data series.
- ARIMA very powerful, but more to learn.
- Initial values more important in ARIMA (can have a big effect on predictions depending on model selected.)
- ARIMA provides confidence intervals
Time Series Functions in OBI 11g

- Very powerful, accessible capability
- Time dimension must be designated
- Query results must be exact to pull from cache
- Can be “expensive” in processing
- Make sure that unique keys are defined at each level ("Jan13" rather than "Jan")
AGO function

- Defines a time-based offset
- Can nest multiple AGO statements (same level)
- `Ago<<Measure>>, <<Level>>, <<Number of Periods>>`
 - Measure is a fact such as sales.
 - Level is an optional term, default is set by the grain of the query (BY clause) or is specified in repository for level based measures.
 - Number of periods is an integer specifying the offset value.
• Time-based aggregation function.
• Calculates based on starting value to current.
• Can nest with AGO (same level)
• ToDate(<<Measure>>, <<Level>>)
• Measure is a fact such as sales
• Level is the time grain such as year or month
PERIODROLLING

- Defines a period of time contextually
- Performs an operation across a specified set of query grain periods
- PeriodRolling(<<Measure>>, <<Starting Period Offset>>, <<Ending Period Offset>>, <<[Hierarchy]>>)
 - Measure is a fact such as sales
 - Starting Period Offset is an integer value, use a minus sign (“-2” means 2 periods ago)
 - Ending Period Offset defines the end of the period, use a zero for current period
 - Hierarchy is an optional setting to specify which time hierarchy to use such as “fiscal”
 - Use “unbound” for starting period offset to calculate total from beginning
 - PeriodRolling uses either the query level grain of “measure” or the measure level for “measure” if it has been set in the Admin tool.
Oracle Data Mining

- Oracle Data Mining is an option for the Enterprise Edition of the Oracle Database.
- A collection of APIs and specialized SQL functions.
- Includes a large number of specialized algorithms and built-in procedures.
- Makes use of many built-in capabilities of the Oracle Database.
- ODM typically refers to “Oracle Data Mining”
Oracle Data Mining Algorithms

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression (GLM)</td>
<td>Classical statistical technique</td>
</tr>
<tr>
<td></td>
<td>Decision Trees</td>
<td>Popular / Rules / transparency</td>
</tr>
<tr>
<td></td>
<td>Naïve Bayes</td>
<td>Embedded app</td>
</tr>
<tr>
<td></td>
<td>Support Vector Machine</td>
<td>Wide / narrow data / text</td>
</tr>
<tr>
<td>Regression</td>
<td>Multiple Regression (GLM)</td>
<td>Classical statistical technique</td>
</tr>
<tr>
<td></td>
<td>Support Vector Machine</td>
<td>Wide / narrow data / text</td>
</tr>
<tr>
<td>Anomaly Detection</td>
<td>One Class SVM</td>
<td>Fraud Detection</td>
</tr>
<tr>
<td>Attribute Importance</td>
<td>Minimum Description Length (MDL)</td>
<td>Attribute reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify useful data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce data noise</td>
</tr>
<tr>
<td>Association Rules</td>
<td>Apriori</td>
<td>Market basket analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link analysis</td>
</tr>
<tr>
<td>Clustering</td>
<td>Hierarchical K-Means</td>
<td>Product grouping</td>
</tr>
<tr>
<td></td>
<td>Hierarchical O-Cluster</td>
<td>Text mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gene and protein analysis</td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>NMF</td>
<td>Text analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feature reduction</td>
</tr>
</tbody>
</table>
Classification

• Prediction model for non-continuous information
 • Binary such as yes/no
 • Limited set (low/medium/high)

• Involves “supervised learning”
 • Prediction directed by a previously known dependent variable or “target” variable.
 • Commonly includes three phases:
 • Training
 • Testing
 • Scoring

• Results in predictive models that are applied to new data sets.

• In our example, we predict which prospects are likely to buy insurance.
Oracle Test Drive

- Free to try out Oracle BI
- Go to www.vlamis.com/testdrive-registration/
- Runs off of Amazon AWS
- Hands-on Labs based on Collaborate 2012 HOLs
- Test Drives for:
 - Oracle BI
 - BI Publisher
 - Microsoft Excel against Oracle OLAP
 - Oracle Data Mining
 - Map Views in OBIEE
- Once sign up, you have private instance for 5 hours
- Available now
BIWA Summit 2016, Jan 26-28
Oracle HQ Conference Center

Business Intelligence, Warehousing and Analytics and Spatial
IOUG Special Interest Group

www.biwasummit.org

Copyright © 2015, Vlamis Software Solutions, Inc.
• Add business card to basket or fill out card
<table>
<thead>
<tr>
<th>Presenter</th>
<th>Session</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dan and Tim Vlamis</td>
<td>OAUG</td>
<td>Mon 12:45 – 1:45 PM</td>
<td>South Seas D</td>
<td>Data Visualization for Oracle Business Intelligence 11g</td>
</tr>
<tr>
<td>Dan and Tim Vlamis</td>
<td>OAUG</td>
<td>Mon 3:15 – 4:15 PM</td>
<td>Coral B</td>
<td>Designing an Analytics Strategy for the 21st Century</td>
</tr>
<tr>
<td>Dan and Tim Vlamis</td>
<td>IOUG</td>
<td>Tues 2:00 – 3:00 PM</td>
<td>Jasmine E</td>
<td>Forecasting, Prediction Models, and Time Series Analysis with Database Analytics and OBIEE</td>
</tr>
<tr>
<td>Dan and Tim Vlamis</td>
<td>IOUG</td>
<td>Wed 3:15 – 4:15 PM</td>
<td>Banyan D</td>
<td>The Oracle Data Mining Machine Bundle: Zero to Predictive Analytics in Two Weeks</td>
</tr>
<tr>
<td>Jon Clark</td>
<td>IOUG</td>
<td>Thurs 12:15 – 1:15 PM</td>
<td>Reef F</td>
<td>Using Cloud technology for Oracle Database and Oracle BI Sandboxes and Training Environments</td>
</tr>
</tbody>
</table>

Copyright © 2015, Vlamis Software Solutions, Inc.