Forecasting, Prediction Models, and Times Series Analysis with Oracle Business Intelligence and Analytics

ODTUG Kscope 15

Dan Vlamis and Tim Vlamis
Vlamis Software Solutions
816-781-2880
http://www.vlamis.com
Presentation Agenda

• Understanding classification and forecasting (predictions)
• Use of Geneva Forecasting engine in Oracle OLAP
 • Holt-Winters and time series
 • Parameter choices
• ARIMA forecasting algorithm in R
 • Use Oracle R Enterprise
• Use of time dimension and time series functions in OBI
Vlamis Software Solutions

• Vlamis Software founded in 1992 in Kansas City, Missouri
• Developed more than 200 Oracle BI systems
• Specializes in ORACLE-based:
 • Data Warehousing
 • Business Intelligence
 • Data Mining and Predictive Analytics
 • Data Visualization
• Expert presenter at major Oracle conferences
• www.vlamis.com (blog, papers, newsletters, services)
• Co-authors of book “Data Visualization for OBI 11g”
• Co-author of book “Oracle Essbase & Oracle OLAP”
• Oracle University Partner
• Oracle Gold Partner
Dan and Tim Vlamis

Dan Vlamis

- Founded Vlamis Software Solutions in 1993
- 25+ years in business intelligence, dimensional modeling
- Oracle ACE Director
- Developer for IRI (expert in Oracle OLAP and related)
- BA Computer Science Brown University

Tim Vlamis

- 25+ years experience in business modeling and valuation, forecasting, and scenario analyses
- Oracle ACE
- Instructor for Oracle University’s Data Mining Techniques and Oracle R Enterprise Essentials Courses
- Professional Certified Marketer (PCM) from AMA
- Adjunct Professor of Business Benedictine College
- MBA Kellogg School of Management (Northwestern University)
- BA Economics Yale University
• Predictions are the holy grail of BI systems and initiatives.
• Most all corporations have need for forecasting.
• Typical forecasting systems
 • Are stand alone or from ERP (not integrated to BI system)
 • Tend to use straight line or heuristic calculations.
 • Not always integrated into the business.
 • Are often tied directly to the budgeting process
• High level of angst surrounding forecasts.
Forecasting Should…

• Should be integrated with rest of BI system.
• Should be another series of measures that are revealed in the context of historic information.
• Should be a part of the Common Enterprise Model.
• Should have visibility across functional areas and roles in corporations
• Should leverage most powerful calculation tools (database and BI system)
• Ideally adjusted based on an integrated view across corporate functions (marketing, operations, finance, etc.).
• Rule-based heuristic (last period, last period +5%, etc.)
• Cross-sectional methodologies (point in time)
• Time series (time sequenced data series)
• Mixed models
• Averages (moving, weighted, etc.)
• Linear and Non-linear regressions (line fitting)
• Transforms, projections, min/max
Methodologies for Today

• OLAP Geneva Forecasting Engine
 • Holt Winters for time series
• Oracle R Enterprise
 • ARIMA
• ODM Classification and Regression (overview)
• OBIEE Time Series Functions (overview)
• The Geneva Forecasting Engine is a set of programs that have been implemented into many popular demand forecasting systems.
• Oracle OLAP has integrated the Geneva Forecasting engine.
• It offers a set of algorithms and control functions for automatically generating forecasts.
OLAP DML Commands for GFE

- **FCOPEN function** -- Creates a forecasting context.
- **FCSET command** -- Specifies the forecast characteristics.
- **FCEXEC command** -- Executes a forecast and populates Oracle OLAP variables with forecasting data.
- **FCQUERY function** -- Retrieves information about the characteristics of a forecast or a trial of a forecast.
- **FCCLOSE command** -- Closes a forecasting context.
METHOD ‘method’

- **AUTOMATIC** best fit for the data. (Default)
- **LINREG** linear regression \(y = a \cdot x + b \) is fitted to the data.
- **NLREG1** nonlinear regression \(x' = \log(x) \) and \(y' = \log(y) \) a polynomial model between \(x \) and \(y(y = c \cdot x^a) \).
- **NLREG2** nonlinear regression \(x' = x \) and \(y' = \ln(y) \) an exponential model between \(x \) and \(y(y = c \cdot e^{ax}) \).
- **NLREG3** nonlinear regression \(x' = \log(x) \) and \(y' = y \) a logarithmic model between \(x \) and \(y(y = a \cdot \log(x) + b) \).
- **NLREG4** nonlinear regression method \(x' = 1/x \) and \(y' = 1/y \) an asymptotic curve \((y = x/(a+bx)) \).
- **NLREG5** nonlinear regression method \(x' = x \) and \(y' = \ln(y/(K-y)) \) an exponential asymptotic curve \((y = cKe^{ax}/(1+ce^{ax})) \).
- **SESMOOTH** single exponential smoothing method intended for short term forecasts of non-seasonal data.
- **DESMOOTH** double exponential smoothing method exponential smoothing is applied to both the series and the trend term.
- **CROSTON** Croston's Intermittent Demand method. used for intermittent data where more than half of the observations are zero
- **HOLT/WINTERS** “triple” exponential smoothing. used on seasonal data
Using “Holt-Winters”

- Triple “Exponential Smoothing” methodology
- Used for data suspected to be seasonal
- Needs multiple seasons
- Assumes regular periods
- Pre/post processing may be necessary (fiscal calendar 445, irregular holidays, “Black Swans”, outages, etc.)
Exponential Smoothing

• Methodology for smoothing data and preferencing more recent periods when doing time series forecasts.
• Similar conceptually to a weighted moving average
• Weights decline according to an exponential function. \{1, (1-\alpha), (1-\alpha)^2, (1-\alpha)^3, \ldots\}
• Higher values give more weight to more recent periods

• Single (weighted average of most recent observation and the most recent smoothed statistic)
• Double (trend either up or down)
• Triple (period effect)
• **ALLOCLAST** {YES|NO}
• **ALPHA** {MAX|MIN|STEP} decimal
• **APPROACH** {'APPAUTO'|'APPMA NUAL'}
• **BETA** {MAX|MIN|STEP} decimal
• **COMPSMOOTH** {YES|NO}
• **CYCDECA Y** {MAX|MIN} decimal
• **GAMMA** {MAX|MIN|STEP} decimal
• **HISTPERIODS** integer
• **MAXFACTOR** decimal
• **METHOD** 'method'
• **MINFCFACTOR** decimal
• **MPTDECA Y** {MAX|MIN} decimal

NTRIALS integer

• **PERIODICITY** cycle-spec
• **RATIO** decimal
• **SMOOTHING** {YES|NO}
• **TRANSFORM** {'TRNOSEA'|'TRSEA '|'TRMPT'}
• **TRENDHOLD** {MAX|MIN|STEP} decimal
• **WINDOWLEN** integer
• Default Max is 0.3
• Default Min is 0.1
• Default Step is 0.1 (.05<= divisible value<=0.2)
• Greater value means nearer periods have more weight.
• Lower value means periods have more equal weight.
Recommendations

• Be careful of accepting the APPAUTO setting
• Be aware of Embedded total time dimensions
• Match HISTPERIODS with PERIODICITY for best results
• PERIODICITY cycle-spec is hierarchical from higher grain to lower
 • Ex {52,7} 52 weeks in a year, 7 days in a week
 • Ex {4,13,7} 4 quarters in a year, 13 weeks in a quarter, 7 days in a week
 • Ex {12} 12 months in a year
• Months are challenging to incorporate with other periods
Case Study Using Oracle OLAP

• Forecasted values from Oracle OLAP made no sense

• Client trying to use Best Fit – complicates study because don’t know what method chosen

• Avoid tendency to inherit mistakes

• Problem in “HISTPERIODS” parameter
 • Solution: set HISTPERIODS to number of data points

• Problem in forecasting on hierarchical dimension – 12 month periods, 1 year period throwing off forecast
 • Solution: LIMIT TIME TO TIMELEVEL ‘PERIOD’

• 4-4-5 “periods” artificially inflate every 3rd period

• Added 3rd year – average of 2 years
Example OLAP DML Forecast Program

```
vrbo_handle int

" Removed error handling and definition of temporary variables such as DJOFCST2_C_SEASONAL
LIMIT DJOFCST2_C_MEASURE_DIM TO 'QTY_HW'

_handle = FCOPEN('MyForecast')

limit djotime_d2 to djotime_d2_levelrel eq 'PERIOD'
SORT DJOTIME_D2 a DJOTIME_D2_END_DATE
"Set forecast parameters for 'best fit'
fcset _handle method 'HOLT/WINTERS' APPROACH 'APPMANUAL' SMOOTHING 'YES' MAXFCFACTOR 10.0 TRANSFORM 'TRSEA' -
   periodicity 12 histperiods 36 BETA MAX 0.5

"Execute the forecast - save seasonal and seasonal smoothed into the variables just defined
FCEXEC _handle time DJOTIME_D2 INTO DJOFCST2_C_STORED -
   seasonal DJOFCST2_C_SEASONAL -
   smseasonal DJOFCST2_C_SMSEASONAL backcast DJOFCST2_C_QTY

ALLSTAT
"Close the forecast
FCCLOSE _handle

update
commit

return
```
Forecasts Did Not Make Sense
Forecasts Did Not Make Sense
Holt-Winters Vs. 3-Mo Moving Avg
Common Transformations

- Use average value per period to eliminate differences among periods (especially months)
- Shorter periods can reveal interesting patterns (e.g. average daily sales rather than average)
Essbase @TREND

- Includes single, double, and triple exponential smoothing techniques.
- Includes linear and non-linear regression option.
- Does not include an auto-choice function.
- Non-linear regression transforms must be manually applied.

- Many other transform, calculation, and modeling capabilities in Essbase.
ARIMA

- Autoregressive Integrated Moving Average
- Powerful algorithm for series analysis and prediction
- Three parameters \((p, d, q)\)
 - Auto regression (how reliant series values are on previous series values). AR(0) is white noise.
 - Integrated (degree of AR differencing, Random Walk)
 - Moving average (smoothing function)
- ARIMA \((1,0,0) = AR(1)\)
- ARIMA \((1,0,1) = ARMA (1,1)\)
- Large number of potential models
- Know the name Rob Hyndman for ARIMA in R

https://www.otexts.org/fpp/
Stationarity

• Processes with no growth related to time.
• Random walks are stationary.
• Necessary to difference non-stationary series before applying ARMA models. (ARIMA handles this through the “Integrated” term “d“ of the (p, d, q) model parameters.)
Non-Seasonal ARIMA \((p, d, q)\)

\[
\phi(B)(1 - B^d) \gamma_t = c + \theta(B) \epsilon_t
\]

\(\{\epsilon_t\}\) is a white noise process with 0 mean and variance \(\sigma^2\).

- \(B\) is a backshift operator
- \(\phi(z)\) is a polynomial of order \(p\)
- \(\theta(z)\) is a polynomial of order \(q\)
Seasonal ARIMA \((p, d, q)(P, D, Q)_m\)

- \(\Phi(B^m)\phi(B)(1 - B^D)(1 - B^d)\gamma_t = c + \Theta(B^m)\theta(B)\varepsilon_t\)
- \(\{\varepsilon_t\}\) is a white noise process with 0 mean and variance \(\sigma^2\).
- \(B\) is a backshift operator
- \(\Phi(z)\) is a polynomial of order \(p\)
- \(\Theta(z)\) is a polynomial of order \(q\)
Forecast() package in R

<table>
<thead>
<tr>
<th>Includes methods:</th>
<th>Produces</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ets()</td>
<td>• Simple forecasting</td>
</tr>
<tr>
<td>• auto.arima()</td>
<td>• Auto chooses best model (smallest AIC)</td>
</tr>
<tr>
<td>• Arima()</td>
<td>• Choose the model yourself</td>
</tr>
<tr>
<td>• arima()</td>
<td>• Somewhat limited; use Arima()</td>
</tr>
<tr>
<td>• HoltWinters()</td>
<td>• Exponential smoothing (seasonal)</td>
</tr>
<tr>
<td>• StructTS()</td>
<td>• Maximum likelihood fit (ARIMA 0,2,2)</td>
</tr>
</tbody>
</table>
Choosing an ARIMA model

- Auto.arima can be used for model choice.
- Manual model choice requires hypothesis testing and evaluation of results.
- Use minimum AIC to chose best model
 - \(AIC = -2\log(L) + 2(p + q + P + Q + k) \)
 - Compare AIC values to each other, absolute values carry no meaning.
ARIMA vs. Holt-Winters

• Holt-Winters can be used for series that are seasonal and have a trend. (require order 2 differencing in ARIMA)
• Model selection can be complex in ARIMA and auto.arima selection may not be well understood.
• ARIMA best for stationary data series.
• ARIMA very powerful, but more to learn.
• Initial values more important in ARIMA (can have a big effect on predictions depending on model selected.)
• ARIMA provides confidence intervals
• Very powerful, accessible capability
• Time dimension must be designated
• Query results must be exact to pull from cache
• Can be “expensive” in processing
• Make sure that unique keys are defined at each level (“Jan13” rather than “Jan”)
AGO function

- Defines a time-based offset
- Can nest multiple AGO statements (same level)
- Ago(<<Measure>>, <<Level>>, <<Number of Periods>>)
- Measure is a fact such as sales.
- Level is an optional term, default is set by the grain of the query (BY clause) or is specified in repository for level based measures.
- Number of periods is an integer specifying the offset value.
• Time-based aggregation function.
• Calculates based on starting value to current.
• Can nest with AGO (same level)
• `ToDate<<(Measure>>, <<Level>>)`
• Measure is a fact such as sales
• Level is the time grain such as year or month
PERIODROLLING

• Defines a period of time contextually
• Performs an operation across a specified set of query grain periods
• PeriodRolling(<Measure>, <Starting Period Offset>, <Ending Period Offset>, <[Hierarchy]>)
• Measure is a fact such as sales
• Starting Period Offset is an integer value, use a minus sign (“-2” means 2 periods ago)
• Ending Period Offset defines the end of the period, use a zero for current period
• Hierarchy is an optional setting to specify which time hierarchy to use such as “fiscal”
• Use “unbound” for starting period offset to calculate total from beginning
• PeriodRolling uses either the query level grain of “measure” or the measure level for “measure” if it has been set in the Admin tool.
Oracle Data Mining

- Oracle Data Mining is an option for the Enterprise Edition of the Oracle Database.
- A collection of APIs and specialized SQL functions.
- Includes a large number of specialized algorithms and built-in procedures.
- Makes use of many built-in capabilities of the Oracle Database
- ODM typically refers to “Oracle Data Mining”
<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Logistic Regression (GLM)</td>
<td>Classical statistical technique</td>
</tr>
<tr>
<td></td>
<td>Decision Trees</td>
<td>Popular / Rules / transparency</td>
</tr>
<tr>
<td></td>
<td>Naïve Bayes</td>
<td>Embedded app</td>
</tr>
<tr>
<td></td>
<td>Support Vector Machine</td>
<td>Wide / narrow data / text</td>
</tr>
<tr>
<td>Regression</td>
<td>Multiple Regression (GLM)</td>
<td>Classical statistical technique</td>
</tr>
<tr>
<td></td>
<td>Support Vector Machine</td>
<td>Wide / narrow data / text</td>
</tr>
<tr>
<td>Anomaly Detection</td>
<td>One Class SVM</td>
<td>Fraud Detection</td>
</tr>
<tr>
<td>Attribute Importance</td>
<td>Minimum Description Length (MDL)</td>
<td>Attribute reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify useful data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce data noise</td>
</tr>
<tr>
<td>Association Rules</td>
<td>Apriori</td>
<td>Market basket analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link analysis</td>
</tr>
<tr>
<td>Clustering</td>
<td>Hierarchical K-Means</td>
<td>Product grouping</td>
</tr>
<tr>
<td></td>
<td>Hierarchical O-Cluster</td>
<td>Text mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gene and protein analysis</td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>NMF</td>
<td>Text analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feature reduction</td>
</tr>
</tbody>
</table>
Classification

• Prediction model for non-continuous information
 • Binary such as yes/no
 • Limited set (low/medium/high)

• Involves “supervised learning”
 • Prediction directed by a previously known dependent variable or “target” variable.
 • Commonly includes three phases:
 • Training
 • Testing
 • Scoring

• Results in predictive models that are applied to new data sets.

• In our example, we predict which prospects are likely to buy insurance.
Oracle Test Drive

• Free to try out Oracle BI, Advanced Analytics and Big Data
• Go to www.vlamis.com/td
• Runs off of Amazon AWS
• Step-by-step exercises
• Test Drives for:
 • Oracle BI
 • Oracle Advanced Analytics
 • Big Data
• Once signed up, you have private instance for 3 hours
• Available now
BIWA Summit 2016, Jan 26-28
Oracle HQ Conference Center

Business Intelligence, Warehousing and Analytics
and Spatial
IOUG Special Interest Group
www.biwasummit.org

Copyright © 2015, Vlamis Software Solutions, Inc.
• Add business card to basket or fill out card
<table>
<thead>
<tr>
<th>Presenter</th>
<th>Session</th>
<th>Time</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim and Dan Vlamis</td>
<td>Session 1</td>
<td>Monday 8:30 - 9:30 AM</td>
<td>Forecasting, Prediction Models, and Time Series Analysis with Database Analytics and OBIEE</td>
</tr>
<tr>
<td>Dan and Tim Vlamis</td>
<td>Session 4</td>
<td>Monday 2:00 – 3:00 PM</td>
<td>Data Visualization for Oracle Business Intelligence 11g</td>
</tr>
<tr>
<td>Tim Vlamis and Michael Caskey</td>
<td>HOT-EPM</td>
<td>Tuesday 3:30 – 5:45 PM</td>
<td>Hands-on Training: Integrating Oracle Advanced Analytics into OBIEE Dashboards</td>
</tr>
<tr>
<td>Tim Vlamis and Michael Caskey</td>
<td>Session 11</td>
<td>Wednesday 8:30 - 9:30 AM</td>
<td>Starting Smart in Oracle Advanced Analytics</td>
</tr>
<tr>
<td>Mark Rittman, Alex Gorbachev and Tim Vlamis</td>
<td>Deep Dive</td>
<td>Thursday</td>
<td>Bringing Oracle Tools to Big Data</td>
</tr>
</tbody>
</table>